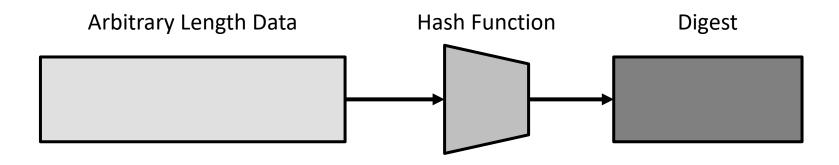
CMSC 449 Malware Analysis


Lecture 3 Hashing and Packing

1

File Hashing

Hash Functions

- Maps an arbitrary-length input to a fixed-length output
- Properties of hash functions:
 - Same input always produces same digest
 - Cannot "reverse" hash digest to find input
 - Very unlikely that two different inputs share a digest

Malware File Hashes

- Files are just a sequence of bytes
 Use that as input to a hash function
- Malware analysts use file hashing to keep track of individual malware samples
 - □ Functions as a "unique ID" for the file
 - Shared in open-source threat reports

Common File Hashing Algorithms

- MD5 033f9150e241e7accecb60d849481871
- SHA-1 09067fd23539df1ece704a92b2dca8e32f20f7c8
- SHA-256 5013a9fc3766f0c065d44c9f6a6a8c0101811d7df4860dd50cf627a0d28ed007

Cryptographically secure – extremely unlikely to have collisions

Downsides of File Hashing

- If a single byte of the file changes, the hash will completely change too
- Malware authors use lots of simple tricks for changing the hash of their malware without changing functionality
 - □ Like just appending random bytes at the end

Similarity Hashing

File Similarity Problems

- Clustering: Grouping similar files together
- Nearest-Neighbor Lookup: Given a specific file, search for the files that are most similar to it
- In naïve cases:
 - Clustering is $O(N^2)$ compare every file to every other file
 - NN Lookup is O(N) compare given file to every other file
- (Actual clustering / NN algorithms are usually faster)

Similarity Hashing

- Comparing the contents of two files is slow!
 - Especially if they are large
- Instead, use a <u>similarity hashing function</u> to compute a similarity digest for each file
 - Same input always produces same similarity digest
 - Similar inputs produce close similarity digests!
 - Digests may be fixed or variable length depending upon algorithm

Similarity Hashing

- Can approximate how alike two files are by comparing their similarity digests
- Digests are short, so significantly shorter comparison time

Notable Similarity Hashes

- <u>SSDEEP</u>: General-use similarity digest, originally for spam email detection
- **TLSH:** Similarity hash developed specifically for file similarity
- LZJD and BWMD: Larger digest size tradeoff for other benefits. BWMD maps file into Euclidean space.
 Developed by Dr. Raff Check out the DREAM lab!
- VHash: VirusTotal's proprietary hash. No public information.

Metadata Hashing

When File Contents Aren't Similar

- Malware may have very different contents but similar behavior
 Packing, obfuscation, polymorphism, etc.
- These techniques can drastically change file contents
 - Especially executable code
 - □ File metadata is often least impacted
- These techniques can defeat similarity hashing and many other kinds of static analysis

Metadata Hashing

- Provide select types of file metadata as input to a hashing function
 - □ Files with same digest share all of these metadata values
- Can index a database based on metadata hash digest
 Allows fast querying over extremely large malware collection
- Trick is figuring out which metadata fields to hash!
 Algorithms based on many different kinds of metadata

Imphash

- Use the imported functions in the order they are listed in the Import Address Table (IAT) as input to a hash function
- The linker builds the IAT based on the order imported functions are called in source code

So files with the same Imphash probably have very similar source code

Weaknesses of Imphash

- High false positive rate when a file contains few imports
- A technique called runtime linking hides imports from the IAT
 We'll talk about this later!

pehash

- Based on specific fields from a PE file's:
 - IMAGE_FILE_HEADER
 - IMAGE_OPTIONAL_HEADER
 - IMAGE_SECTION_HEADERs
- Very low false positive rate due to inclusion of many fields

Weaknesses of pehash

 Very strict hash – even small changes in metadata can cause related files to not be identified

Usually defeated by packers, since they often add/change PE sections in the file

Other Metadata Hashes

 Rich header hash: Hash the contents of the Rich header, an undocumented header that appears in all files linked using the Microsoft linker

 <u>RichPE hash</u>: My own metadata hash! Based on fields in both the Rich header and PE headers.

Have also seen hashes of resources, file signatures

VirusTotal Demo

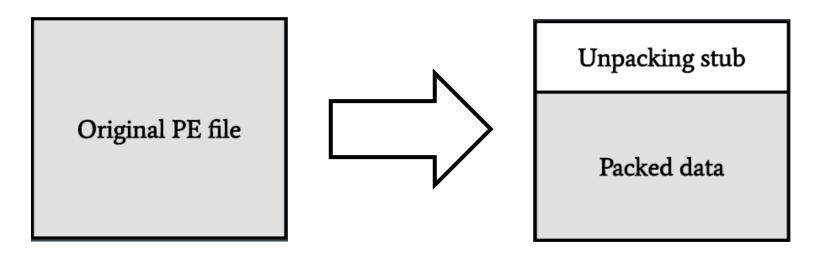
Lab03-03.exe

Cluster and NN Lookup Demo

MOTIF Dataset

Packers

Packers


 Malware authors want to make it difficult for you to perform static analysis on their malware

- Use packers to hide:
 - Executable code
 - Strings
 - Imports

How Packers Work

Compress original program and add an unpacker stub

When the packed executable is run, the stub unpacks the compressed program into memory and runs it

Indicators that a File is Packed

- File / Section entropy > 7
- Few readable strings
- Unusual section names
- Imports resolved using runtime linking
- Sections with unusual raw / virtual sizes

PEiD, DIE, VirusTotal are decent at detecting packers
 Notice lots of some false positives for some packers though

 A byte has 2⁸ possible values, so a truly random sequence of bytes has an entropy of 8

Executable code usually has an entropy around 4-6

 Obfuscated / encrypted data usually has an entropy over 7, often near 8

Runtime Linking

- Malware authors don't want you to be able to easily analyze a program's imports
- Can hide a file's imports until it is run by using runtime linking
 Resolves imports as the file runs
 Can import functions that are not listed in the IAT

How Runtime Linking Works

- LoadLibrary Gets a handle to any DLL file on a system
- GetProcAddress Gets address of any function in a DLL
- Together, allows a program to import a function from any DLL
- There are other ways to do runtime linking, but this is by far the most common technique

Packing Indicators Demo

Lab01-02.exe Lab01-03.exe